Mr. Baroody's Web Page

you are here > Class Notes - Chapter 1 - Lesson 1-3

Collinearity, Between, and Assumptions - Lesson 1-3
Here's a warmup!

Find $m \angle D A T$.

Let's begin today by covering the concept of collinear and noncollinear points. We'll also talk about what it means for a point to be between two other points.

Collinear points are points that lie on the same line.
Noncollinear points are points that do not lie on the same line.

In order for a point to be between two other points, all three must be collinear.

Now, there are only two possibilities given three points...one that determines a triangle and one that doesn't. This should allow you to determine a range of values for the length of third side of a triangle given the length of the other two:

For any three points, there are only two possibilities:

1. They are collinear (one point is between the other two and two of the distances add up to the third).

$$
\begin{aligned}
\mathrm{AB} & =3.6 \mathrm{~cm} \\
\mathrm{BC} & =7.9 \mathrm{~cm} \\
\mathrm{AC} & =11.5 \mathrm{~cm}
\end{aligned}
$$

2. They are noncollinear (the three points determine a triangle).

$$
\begin{aligned}
& \mathrm{AB}=3.2 \mathrm{~cm} \\
& \mathrm{BC}=8.3 \mathrm{~cm} \\
& \mathrm{AC}=10.3 \mathrm{~cm}
\end{aligned}
$$

Given this, what can we say about the sum of the lengths of any two sides of a triangle?

Here are the things we can assume from a diagram and those we can't:
How to Interpret a Diagram

You should assume:	You should not assume:
Straight lines and angles	Right angles
Collinearity of points	Congruent segments
Betweeness of points	Congruent angles
Relative positions of points	Relative sizes of segments and angles

And here's an example:

Some things we can assume:
Some things we can not assume:
$\stackrel{\mathrm{ACD}}{4} \overleftrightarrow{\mathrm{BCE}}$ are straight lines.
$\angle A C D \& \angle B C E$ are straight angles.
C, D, E are noncollinear.
C is between $B \& E$.
E is to the right of A.
$\angle B A C$ is a right angle.
$\overline{\mathrm{CD}}=\overline{\mathrm{DE}}$.
$\angle B=\angle E$.
$\angle C D E$ is an obtuse angle.
$\overline{B C}$ is longer than $\overline{C E}$.

