Inscribed and Circumscribed Polygons - Lesson 10-7

Here's the warmup!

$$
\begin{aligned}
& \overparen{\mathrm{mTM}}= \\
& \mathrm{m} \angle \mathrm{P}= \\
& \mathrm{m} \angle \mathrm{~S}= \\
& \mathrm{m} \angle \mathrm{M}= \\
& \mathrm{m} \angle \mathrm{~T}= \\
& \mathrm{m} \angle \mathrm{~S}+\mathrm{m} \angle \mathrm{~T}= \\
& \mathrm{m} \angle \mathrm{P}+\mathrm{m} \angle \mathrm{M}=
\end{aligned}
$$

Today we're going to learn about inscribed and circumscribed polygons. Here are their definitions:

A polygon is inscribed in a circle if all of its vertices lie on the circle. The circle is also said to be circumscribed about the polygon.

The center of a circle circumscribed about a polygon is the circumcenter of the polygon.

A polygon is circumscribed about a circle if each of its sides is tangent to the circle. The circle is also said to be inscribed in the polygon.

The center of a circle is inscribed in a polygon is the incenter of the polygon.

And here are some properties related to them:

Theorem 92
if a quadrilateral is inscribed in a circle, its opposite angles are supplementary.

Theorem 93
If a parallelogram is inscribed in a circle, it must be a rectangle.

The following diagram should give you a "visual" of why Theorem 93 is true. Notice that when the parallelogram is no longer a rectangle, it is also no longer inscribed:

