Area of a Trapezoid - Lesson 11-3

Warmup!

Find the area of AMPR

Today we're going to talk about the area of a trapezoid. To find this, let's start with a trapezoid (the red one), make a copy of it (the yellow one), and rotate it 180 degrees:

Next, let's translate it up to form a parallelogram (the combination of both trapezoids). Using the parallelogram area formula, we are able to find a formula for the area of the trapezoid:

> Theorem 100: The area of a trapezoid is given by the formula

> $$
\begin{array}{l}A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \text {, where } A \text { is the area, } b_{1} \text { and } b_{2} \text { are the } \\ \text { lengths of the two bases, and } h \text { is the height of the } \\ \text { trapezoid (Trapezoid Area Conjecture). }\end{array} .
$$

Now, we're going to defined a median of a trapezoid and learn about two of its properties:

The median of a trapezoid is the line segment that joins the midpoints of the non-parallel sides of a trapezoid.

Theorem 101: The measure of the median of a trapezoid equals the average of the measures of the bases.

$$
\text { Length }_{\text {Median }}=\frac{1}{2}\left(b_{1}+b_{2}\right)
$$

where b_{1} is the length of one base and b_{2} is the length of the other base.

Theorem 102: The area of a trapezoid is given by the formula

$$
\mathrm{A}_{\text {Trap }}=\mathbf{M h}
$$

where M is the length of the median and h is the height of the trapezoid.

