Areas of Regular Polygons - Lesson 11-5

Here's the warmup!
a. Find the area of an equilateral triangle with sides of length 8
b. Find the area of a regular hexagon with sides of length 8
c. Find the ratio of the area of the hexagon to the triangle.

Today we're going to start by deriving a formula for the area of an equilateral (regular) triangle. If you start with an equilateral triangle with side length s:

And then do the standard procedure for finding the length of the altitude (love those 30-60-90 triangles!),

You are then able to use the formula for the area of a triangle to derive a new formula,

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(s)\left(\frac{s \sqrt{3}}{2}\right) \\
& A=\frac{s^{2} \sqrt{3}}{4}
\end{aligned}
$$

which can be summarized as follows:
Theorem 104:
The area of an equilateral triangle equals the product of one-fourth the square of a side and the square root of 3 .

$$
A=\frac{s^{2} \sqrt{3}}{4}
$$

where s is the length of a side.

Next, we can generalize an area formula for all regular polygons. To start, we need to define the radius and the apothem of a regular polygon:

> The apothem of a regular polygon is a perpendicular segment from the center of the polygon's circumscribed circle to a side of the polygon (joins the center to the midpoint of a side).
> The radius of a regular polygon is a segment joining the center of the polygon's circumscribed circle to any vertex.

If we look at a pentagon, you should be able to see how the formula for its area would be as shown in the table below (you should fill in the box below the 5):

\# of sides	5	8	12	\cdots	n
Area of reg. polygon				\cdots	

The same can be done for an octagon (now fill in the box below the 8):

\# of sides	5	8	12	\cdots	n
Area of reg. polygon				\ldots	

and a dodecagon (yes...fill in the box below the 10).

\# of sides	5	8	12	\cdots	n
Area of reg. polygon				\cdots	

In conclusion, we can derive the general formula to find the area of any given regular polygon:

\# of sides	5	8	12	\cdots	n
Area of reg. polygon				\ldots	

Theorem 105
The area of a regular polygon is given by the formula $A=\frac{1}{2}$ asn, where A is the area, a is the apothem, s is the length of each side, and n is the number of sides of the regular polygon.

Because the length of each side times the number of sides is the perimeter, $s n=p$, where p is the perimeter. Therefore, the formula for the area of a regular polygon can also be written $A=\frac{1}{2} a p$.

