Areas of Circle, Segments, and Sectors - Lesson 11-6

Here's your warmup!

An equilateral triangle has sides of length 6. A second triangle is similar to it, and has sides of length of 18. Find the ratio of the area of the smaller Δ to the area of the larger Δ.

Let's start by remembering the formula for the area of a circle:

Postulate:

The area of a circle is given by the formula

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

where A is the area, and r is the radius of the circle.

Now, you should practice this by applying it to a couple of problems (these should all be pretty straight forward for you to solve):

Find the circumference of a circle whose area is $36 \mathrm{~m} \mathrm{~cm}^{2}$.

Find the area of a circle whose circumference is 9 m cm .

Find the diameter of a circle whose area is $\frac{9}{4} \pi \mathrm{~cm}^{2}$.

Find the radius of a circle whose circumference is 12 cm .

At this point we need to define some new areas that are associated with circles.

A sector of a circle is the region between two radii of a circle and the included arc

A segment of a circle is the region between a chord of a circle and the included arc.

An annulus is the region between two concentric circles (the yellow area in the diagram to the left)

For each of these, a different technique is used to find its area:

Theorem 106 - The area of a sector of a circle is equal to the area of the circle times the fractional part of the circle detemined by the sector's arc

$$
A=\left(\frac{a}{360}\right) \pi r^{2}
$$

where r is the radius and a is measured in degrees (Sector Area Theorem).

$A_{\text {segment }}=A_{\text {sector }}-A_{\text {Triangle }}$
$=\frac{a}{360}\left(\pi r^{2}\right)-\frac{1}{2} b h$

$$
A_{\text {Annulus }}=A_{\text {Big Cirecle }}-A_{\text {smanl Circle }}
$$

$$
=\pi R^{2}-\pi r^{2}
$$

Here are some examples using the information in today's lesson. Find the yellow area (or x) in each case!

Find x given that the shaded area is $14 \mathrm{~m} \mathrm{~cm}^{2}$.

