Hero's and Brahmagupta's Theorems - Lesson 11-8

Here's the warmup for today:

Find the ratio of the area of $\triangle A B D$ to the area of $\triangle C B D$

Today we're going to learn two formulas that were developed 2000-3000 years ago. The first was discovered by Hero of Alexandria and is therefore called Hero's Formula. It helps us to find the area of a triangle given the lengths of its three sides:

$$
\begin{aligned}
& \text { Theorem } 109 \text { (Hero's Formula) } \\
& \qquad A_{\triangle}=\sqrt{s(s-a)(s-b)(s-c)} \\
& \text { where } a, b \text {, and } c \text { are the lengths of the sides of the triangle and } \\
& s=\text { semiperimeter }=\frac{a+b+c}{2}
\end{aligned}
$$

An example of using this to find the area of a triangle follows:

Find the area of a triangle with sides 3,6 , and 7 .

Simply apply the formula!

The second formula was developed by a Hindu mathematician named Brahmagupta. His formula allows us to find the area of cyclic quadrilaterals:

$$
\begin{aligned}
& \text { Theorem } 110 \text { (Brahmagupta's Formula) } \\
& \qquad \mathbf{A}_{\text {Cyclic Quadrilateral }}=\sqrt{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{d})}
\end{aligned}
$$

where a, b, c, and d are the lengths of the sides of the quadrilateral and $\mathrm{s}=$ semiperimeter $=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{2}$.

Here's an example problem:

Find the area of the inscribed quadrilateral with sides $2,7,6$, and 9.

Again, start by finding the semiperimeter and then just use the formula:

