Volumes of Pyramids \& Cones - Lesson 12-5

Here's the warmup!

Find the volume of the solid.

Today we're looking at the volume of pyramids and cones, which is based on the volume of prisms and cylinders:

The volume of a pyramid (cone) is related to the volume of a prism (cylinder) having the same base and height.

Theorems 114 and 115:
The volume of a pyramid (cone) is equal to one-third of the product of the area of the base and the height

$$
V=\frac{1}{3} B H
$$

where B is the area of the base and H is the height of the pyramid (cone).

See if you can do this example problem!

If the height of a right pyramid is 21 and the pyramid's base is an equilateral triangle with sides measuring 8 , what is the pyramid's volume?

We should also look at an interesting ratio:

Theorem 116

In a pyramid or a cone, the ratio of the area of a cross section to the area of the base equals the square of the ratio of the figures' respective distances from the vertex.

$$
\frac{C}{B}=\left(\frac{k}{h}\right)^{2}
$$

where C is the area of the cross section, B is the area of the base, k is the distance from the vertex to the cross section, and h is the height of the pyramid or cone.

This theorem isn't really that complicated...to find the ratio of the cross sections, just find the ratio of the heights.

