
you are here > Class Notes - Chapter 2 - Lesson 2-6

Multiplication \& Division Properties - Lesson 2-6

Here is our warmup...don't make this too hard...remember that you can use previously proved theorems if it's not asking you to prove a theorem (which it's not).

Statements

Reasons

Today, we're going to cover a couple of new theorems regarding multiplication and division of segments and angles. Let's start by proving Theorem 14 (the Multiplication Property of Segments and Angles).

Mr. Baroody’s Web Page

you are here > Class Notes - Chapter 2 - Lesson 2-6
Theorem 14 - If segments (or angles) are \cong, their like multiples are \cong (Multiplication Property).
Given: $\quad \overline{\mathrm{AB}} \cong \overline{\mathrm{EF}}$
B, C, F, G are trisection points.

Prove: $\quad \overline{\mathrm{AD}} \cong \overline{\mathrm{EH}}$

Mr. Baroody's Web Page

you are here > Class Notes - Chapter 2 - Lesson 2-6
Theorem 15 (the Division Property of Segments and Angles) is pretty similar. You should be able to come up with a proof for this...

Theorem 15 - If segments (or angles) are \leftrightharpoons their like divisions are \cong (Division Property).

Theorem 15 - If angles are \cong, their like divisions are \cong (Division Property of $\cong<\mathbf{s}$).
Given: $\begin{array}{ll} & \angle A B C \cong \angle X Y Z \\ & \overrightarrow{B D} \text { bisects } \angle A B C \\ & \overrightarrow{Y W} \text { bisects } \angle X Y Z\end{array}$
Prove: $\quad \angle 1 \cong \angle 2$
Statements

Reasons

