Mr. Baroody's Web Page

you are here > Class Notes - Chapter 3 - Lesson 3-7

Angle-Side Theorems - Lesson 3-7

Here's today's warmup!
$\begin{array}{ll}\text { Given: } & \overline{\mathrm{AM}} \cong \overline{\mathrm{AN}} \\ & \overline{\mathrm{AT}} \text { is the median of } \triangle \mathrm{AMN}\end{array}$

Prove: $\quad \angle \mathbf{M} \cong \angle N$

Today, we're going to cover two new properties regarding isosceles triangles:

Sometimes, students get these two theorems mixed up, but you should be able to keep the straight if you think about the fact that ITT stands for Isosceles Triangle Theorem...you can only use it if you know that it's an isosceles triangle, right? Well, isosceles triangles have at least 2 congruent sides...so ITT is sides implies angles...converse of ITT is angles implies sides!

There are two new postulates you need to know as well, which will be used in restrictions type problems. Neither of these will be used in proofs, but they are useful for some of the kinds of homework (and quiz/test!) problems that we'll be doing.

If two sides of a triangle are not congruent, then the angles opposite them are not congruent, and the larger angle is opposite the longer side.

If two angles of a triangle are not congruent, then the sides opposite them are not congruent, and the longer side is opposite the larger angle.

OK...time for a couple of examples...let's start with the following:

Given: $\quad \triangle J O M$ is isosceles with $\angle J O M$ the vertex \angle $\overrightarrow{\mathrm{OK}}$ bisects $\angle \mathrm{JOM}$

Prove: $\overline{\mathrm{OK}}$ is the median to the base

Reasons

And wrap up the section with this proof, which requires one of our new theorems!

Given: $\quad \begin{array}{ll}\overline{B X} & \cong \overline{A Y} \\ & \overline{B W} \cong \overline{A Z} \\ & \angle 3 \cong \angle 4\end{array}$

Prove: $\quad \triangle W T Z$ is isosceles

Statements

