Mr. Baroody's Web Page

you are here > Class Notes - Chapter 3 - Test Topics

Topics for the Chapter 3 Test

Here are the things you need to know for the upcoming Chapter 3 Test:

Definitions

- Congruent Triangles (and CPCTC)
- Congruent Polygons
- Circle
- Center of a circle
- Radius of a circle
- Median of a triangle
- Altitude of a triangle
- Scalene Triangle
- Isosceles Triangle
 - o Base
 - Base angles
 - o Legs
 - \circ Vertex angle
- Equilateral Triangle
- Equiangular Triangle
- Acute Triangle
- Right Triangle
 - Hypotenuse
 - o Legs
- Obtuse Triangle

Postulates

- Any segment or anlge is congruent to itselft (Reflexive Property)
- If the 3 sides of one triangle are congruent to the 3 sides of another triangle, then the triangles are congruent (SSS).
- If two sides and their included angle of one triangle are congruent to the corresponding sides and angle in another triangle, then the triangles are congruent (SAS).
- If two angles and their included side of one triangle are congruent to the corresponding angles and side in another triangle, then the triangles are congruent (ASA).
- Two points determine a line, ray or segment (Auxiliary Lines).
- If two sides of a triangle are not congruent, then the angles opposite them are not congruent and the larger angle is opposite the longer side.
- If two angles of a triangle are not congruent then the sides opposite them are not congruent and the longer side is opposite the larger angle.

Mr. Baroody's Web Page

you are here > Class Notes - Chapter 3 - Test Topics

Theorems

- 19. All radii of a circle are congruent
- 20. If two sides of a triangle are congurent, then the angles opposite the sides are congruent (ITT).
- 21. If two angles of a triangle are congruent, then the sides opposite the angles are congruent (Converse of ITT).
- 22. If the hypotenuse and a leg of one right triangle are congruent to the corresponding parts of a second right triangle, then the triangles are congruent (HL).

Constructions

- Median of a triangle
- Altitude of a triangle (both obtuse and acute)