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Proving that Lines are Parallel - Lesson 5-2

Today’s warmup is a review of formal indirect proof...my hint is to not forget to phone home!!

Given: M is the midpoint of NL N
KN is not = to KL

Prove: NWis not = to LW
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Honors Geometry Notes

Today, we're going to cover a number of theorems regarding how to prove that lines are parallel.
However, in order to prove these, we have to start by understanding what an exterior angle is:

Adjacent interior angle <— Exterior angle

\/

Remote interior angles

You should be able to recognize that there are 6 exterior angles for every triangle. Now, let’s talk
about a number of theorems that can be proved based on the first (#29). We're not going to prove
Theorem #29, but you should be able to find a proof online if you're curious.

Baroody

Theorem 29 - The measure of an exterior angle of a triangle is greater than the
measure of either remote interior angle (Exterior Angle Inequality Theorem).

Theorem 30 - If two lines are cut by a transversal such that two alternate interior
angles are congruent, the lines are parallel (Alt. int. .s « = || lines or AIP).

Theorem 31 - If two lines are cut by a transversal such that two alternate exterior
angles are congruent, the lines are parallel (Alt. ext. .s = = || lines or AEP).

Theorem 32 - If two lines are cut by a transversal such that two corresponding angles
are congruent, the lines are parallel (Corr. .5 = = || lines or CAP).
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Honors Geometry Notes

Assuming that the Exterior Angle Inequality Theorem (#29) is true, let’s prove AIP. The others are
very similar.

Theorem 30 - If two lines are cut by a transversal such that two alternate interior
angles are congruent, the lines are parallel (Alt. int. s = = || lines or AIP).

<« /‘ >

Given: .3 =.6 3
Prove: allb b A
<€ / >
Assume that a is not || to b. a
3

= that a and b must intersect at some point P.
.3 is an exterior angle of the A formed, so by the
Exterior Angle Inequality Theorem, m.3 > m.6. b 6 P

But this contradicts the given fact that .3 = /6.
-. The assumption was false and the lines are ||

You should be able to see how you could prove AEP & CAP by a similar method.

Now, let’s understand a number of other theorems that are related:

Theorem 33 - If two lines are cut by a transversal such that two interior angles on the
same side of the transversal are supplementary, the lines are parallel (SSISP).

Theorem 34 - If two lines are cut by a transversal such that two exterior angles on the
same side of the transversal are supplementary, the lines are parallel (SSESP).

Theorem 35 - If two coplanar lines are perpendicular to a third line, they are parallel.
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Let’s wrap up by doing an example (which is the proof for Theorem 35). You should be able to
prove this using one of AIP, AEP, or CAP!!

Given: (A_)B 1 iD A 1 /\B -
CD L BD < >
2
—s e C D
Prove: AB || CD < >
Vv
Statements Reasons
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