Perpendicularity of a Line and a Plane - Lesson 6-2

Today, after going over the 6.1 homework, we discussed what it means for a line to be perpendicular to a plane. We started with a definition for this situation and then a theorem that makes proving it a little easier:

A line is perpendicular to a plane if it is perpendicular to every one of the lines in the plane that pass through its foot (Definition of a Line \perp to a Plane).

Theorem 47: If a line is \perp to two distinct lines that lie in a plane and that pass through its foot, then it is perpendicular to the plane (Line \perp to Plane Theorem).

We then went over the following example. Note that the plane should be labeled m in the diagram! Also...you should make sure you understand how we used Theorem 48 and how we used the converse of the equidistance theorem!!

Statements

1. $\overline{A B} \perp n=1 \overline{A B} \perp \overline{B D}$
2. $\angle A B C$ and $\angle A B D$ are right $\angle s$

A 4. $\angle A B C \cong \angle A B D$
5. $\overleftrightarrow{B E} \perp$ bis. $\overline{C D}$
6. $\overline{\mathrm{BC}} \cong \overline{\mathrm{BD}}$
7. $\overline{\mathbf{A B}} \cong \overline{\mathbf{A B}}$
8. $\triangle A B C \cong \triangle A B D$
9. $\overline{\mathrm{AD}} \cong \overline{\mathrm{AC}}$
10. $\triangle A D C$ is isosceles

Reasons

1. Given
2. Definition of Line \perp Plane
3. Defn. of \perp lines
4. RAT
5. Given
6. Converse of Equidistance Theorem
7. Reflexive Property
8. SAS $(6,4,7)$
9. CPCTC
10. Defn. of isos \triangle

This stuff really shouldn't be too bad for you...the key is being able to "see" the diagrams...in other words...make sure you can see how the diagrams lines relate to the planes and what the shapes really look like.

