Mr. Baroody's Web Page

you are here > Class Notes - Chapter 7 - Lesson 7-2

Two Proof-Oriented Triangle Theorems - Lesson 7-2
Here's the warmup!

Given:	$\overline{\mathrm{PR}} \cong \overline{\mathrm{RT}}$
	$\angle \mathrm{Q} \cong \angle \mathrm{S}$

you are here > Class Notes - Chapter 7 - Lesson 7-2
Today, with the knowledge we garnered yesterday and something called the No Choice Theorem, we can easily show that AAS can be used to prove triangles congruent...this'll make things easier!!

Theorem 52: If two \angle s of one Δ are \cong to two \angle s of a second Δ, then the third \angle s are \cong (No Choice Theorem).

Theorem 53: If there exists a correspondence between the vertices of two triangles such that two angles and a nonincluded side of one are congruent to the corresponding parts of the other, then the triangles are congruent (AAS).

Given: $\overline{\mathrm{JH}} \cong \overline{\mathrm{OM}}$
$\angle \mathbf{G} \cong \angle K$
$\angle H \cong \angle M$
Prove: $\quad \triangle \mathrm{GHJ} \cong \triangle K M O$

Statements

Reasons

