Mr. Baroody's Web Page

you are here > Class Notes - Chapter 7 - Lesson 7-4

Regular Polygons - Lesson 7-4

Here's today's warmup...you can do it!!

How many sides does a polygon have if each of its interior angles has a measure of 160° ?

OK...today's lesson is very short...we'll start by defining what equilateral, equiangular, and regular polygons are:

A polygon is an equilateral polygon if and only if its sides are equal in measure.

A polygon is an equiangular polygon if and only if its angles are equal in measure.

If a polygon is both equilateral and equiangular, then it is said to be a regular polygon.

Now let's look at how to calculate the measure of one angle in an equiangular polygon. Note that this only works for equiangular (and therefore regular) polygons. Don't try to use this for a polygon that is not equiangular!!

Number of sides of EQUIANGULAR POLYGON $(n)=6$.

Measure of all interior angles $\left[(\mathrm{n}-2) 180^{\circ}\right]=(6-21) 80^{\circ}=720^{\circ}$.

Measure of one interior angle $\left(\frac{\text { sum of int. angles }}{n}\right)=\frac{720^{\circ}}{6}=120^{\circ}$.

Theorem 57: the measure E of each exterior angle of an equiangular polygon of n sides is given by the formula $E=\frac{360}{n}$.

