Mr. Baroody's Web Page

you are here > Class Notes - Chapter 8 - Lesson 8-2

Similarity - Lesson 8-2

Here's the warmup for today...you might need to remember the quadratic formula to solve it! Remember how you "couldn't wait" to get back to more algebra-like material?!

Solve for x :

$$
\frac{x+1}{x}=\frac{x}{1}
$$

Today, we're going to begin discussing similar polygons. First, we defined what these were:

> Two polygons are similar polygons if and only if the corresponding angles are congruent and the ratios of the measure of corresponding sides are equal.

> TINY \sim HUGE. Find the side labeled x and the angle labeled y.

$$
\text { Dilation } \longrightarrow \text { Reduction }
$$

Looking at the example above and understanding that corresponding sides are proportional helps us to set up the following equation to find side x.

$$
\begin{aligned}
& \frac{T Y}{H E}=\frac{Y N}{E G} \\
& \Rightarrow \frac{18}{24}=\frac{21}{x} \\
& \Rightarrow 18 x=504 \\
& \Rightarrow x=28
\end{aligned}
$$

y is easy to find assuming that you understand that corresponding angles of similar polygons are congruent. $\angle \mathrm{U}$ corresponds to $\angle \mathrm{I}$ (you should know this from the order of the letters in the statement of similarity (TINY $\sim H U G E$), so $\angle \mathrm{U}$, or y, must be the same as $\angle \mathrm{I}$, or 85°.

Next, let's talk about a useful theorem - it relates the ratio of the sides to the ratio of the perimeters of similar polygons:

Theorem 60: The ratio of the perimeters of two similar polygons equals the ratio of any pair of corresponding sides.

ABCDE ~ VWXYZ
Find the perimeter of $A B C D E$

For this problem, you should first note that side AB corresponds to side VW, so the ratio of the sides is $9 / 6$ or $3 / 2$. Therefore, we can calculate the perimeter of ABCDE in the following manner:

Finally, we should talk about how to find the 1st, 2nd, 3rd, or 4th proportional of three given numbers:

To find the 1st, 2nd, 3rd, or 4th proportional of a set of numbers:

1. Order the numbers from least to greatest
2. Set up a proportion with x in the position you're trying to find based on the following:

$$
\frac{1^{\mathrm{st}}}{2^{\mathrm{nd}}}=\frac{3^{\mathrm{rd}}}{4^{\mathrm{th}}}
$$

e.g., to find the 3rd proportional of 12, 1, and 5, set up the following proportion and solve:

