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Methods of Proving Triangles Similar - Lesson 8-3

Here’s the warmup!

APRB - AWNM
P PR =20
w RB = 22
PB =18
i E WN =12
Find NM and WM




Honors Geometry Notes

Today, we’re going to look at how to prove that two triangles are similar. This is very much like proving
that two triangles are congruent (remember SSS, SAS, ASA, AAS?), with the exception that there are
only three shortcuts (understanding that AAA~ and AA~ are the same due to the No Choice Theorem):

Postulate:

If there exists a correspondence between the vertices of two triangles such that the
three angles of one triangle are congruent to the corresponding three angles of the
other triangle, then the triangles are similar (AAA -).

Theorem 61:

If there exists a correspondence between the vertices of two triangles such that two of
the angles of one triangle are congruent to the corresponding angles of the other, then
the triangles are similar (AA -).

B
F
b ¢ &4 H
c A=
Given: :B = :F Conclusion: ABCD - AFGH
L=.6G
Theorem 62:

If there exists a correspondence between the vertices of two triangles such that the
ratios of the measures of corresponding sides are equal, then the triangles are similar
(SSS -).

Theorem 63:

If there exists a correspondence between the vertices of two triangles such that the
ratios of the measures of two pairs of corresponding sides are equal and the included
anlges are congruent, then the triangles are similar (SAS -).

B
F
H
Cc
Given: .C ~ .G Conclusion: AABC - AHFG
BC _CA
FG ~ GH
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Honors Geometry Notes

So AA~, SSS~ and SAS~ work for proving triangle similarity. Now, remember the key thing with
similarity is having congruent corresponding angles and proportional corresponding sides. Don't get
this confused with proving congruence, where you're looking for congruent corresponding

angles and congruent corresponding sides!!

Here is an example I’d like you to try:

Given:  KH s the altitude to J
hypotenuse GJ of right AGHJ K

Prove: AKHJ ~ AHGJ

Statements Reasons

Baroody Page 3 of 3



