Mr. Baroody’s Web Page

you are here > Class Notes - Chapter 8 - Lesson 8-4

Congruence and Proportions in Similar Triangles - Lesson 8-4

Here's the warmup!

Given: \mathbf{N} is the midpoint of $\overline{\mathrm{ML}}$
F is the midpoint of $\overline{T L}$
Prove: $\Delta N F L \sim \Delta M T L$

Prepare to discuss two possible logical solutions!!

Today, we're going to apply the definition of similar polygons to solve some interesting problems...for instance, let's start with a "shadow" problem:

If you know two triangles are similar, you can use the definition of similarity to prove:

1. Corresponding sides of the triangles are proportional, and
2. Corresponding angles of the triangles are congruent.

e.g., If the tree's shadow is $\mathbf{5 0}$ ' long and the man's shadow is 10^{\prime} long, how tall is the tree if the man is 6^{\prime} tall?

Now, let's do an example proof, which shows how you can use the Means-Extremes Products Theorem to prove a relationship between the segments shown:

Given: \quad YSTW is a parallelogram $\overline{S X} \perp \overline{Y W}$
$\overline{\mathbf{S V}} \perp \overline{\mathbf{W T}}$
Prove: $\quad S X \cdot Y W=S V \cdot W T$

Reasons

