## Mr. Baroody's Web Page


you are here > Class Notes - Chapter 8 - Lesson 8-5

## Three Theorems Involving Proportions - Lesson 8-5

Here's the warmup!

Given: $\quad \overline{\mathrm{AT}} \| \overline{\mathrm{BN}}$

$$
\begin{aligned}
& F A=12, F T=15, \\
& A T=14, A B=8
\end{aligned}
$$

Find: $\quad$ BN and TN


Today, we're going to learn some theorems that prove useful when solving problems involving similar triangles. We'll start with the side-splitter theorem:

Theorem 64
If a line is parallel to one side of a triangle and intersects the other two sides, it divides those two sides proportionally (Side-Splitter Theorem).


For those of you who are interested, here's the proof for the side-splitter theorem:

Theorem 64: If a line is parallel to one side of a triangle and intersects the other two sides, it divides those two sides proportionally (Side-Splitter Theorem).

## Given: $\overline{\mathrm{BE}} \| \overline{\mathrm{CD}}$

Prove: $\frac{A B}{B C}=\frac{A E}{E D}$


1. $\overline{B E} \| \overline{C D}$
$A A$ 2. $\angle A B E=\angle C ; \angle A E B=\angle D$
2. $\triangle A B E \sim \triangle A C D$
3. $\frac{A B}{A C}=\frac{A E}{A D}$
4. $A C=A B+B C ; A D=A E+E D$
5. $\frac{A B}{A B+B C}=\frac{A E}{A E+E D}$
6. $A B(A E+E D)=A E(A B+B C)$
7. $(A B \cdot A E)+(A B \cdot E D)=(A E \cdot A B)+(A E \cdot B C)$
8. $(A B \cdot E D)=(A E \cdot B C)$
9. $\frac{A B}{B C}=\frac{A E}{E D}$
10. Given
11. PCA
12. $A A \sim(2,2)$
13. CSSTP
14. Assumed from Diagram
15. Substitution $(5 \rightarrow 4)$
16. MEPT
17. Distribution Property
18. Subtraction Property of Equality
19. MERT

Next, we can apply the side-splitter theorem to parallel lines:

## Theorem 65

If three or more parallel lines are intersected by two transversals, the parallel lines divide the transversals proportionally.


Finally, we'll look at the proportions we can set up if we have an angle bisector...this is a nice proof, huh?

Theorem 66: If a ray bisects an $\angle$ of a $\Delta$, it divides the opposite side into segments that are proportional to the adjacent sides (Angle Bisector Theorem).

Given: $\triangle A B D$ $\overrightarrow{A C}$ bis. $\angle B A D$

Prove:

$$
\frac{B C}{C D}=\frac{A B}{A D}
$$



Reasons

1. $\triangle A B D$
2. $\overrightarrow{A C}$ bis. $\angle B A D$
3. $\angle 1=\angle 2$
4. Draw through $\mathbf{B}$ the line II to $\overline{\mathbf{A C}}$
5. Extend $\overline{\mathrm{DA}}$ to intersect $\overline{\mathrm{EB}}$ at E
6. $\frac{B C}{C D}=\frac{E A}{A D}$
7. $\angle 1=\angle 3$
8. $\angle 2=\angle 4$
9. $\angle 3=\angle 4$
10. $\overline{E A}=\overline{A B}$
11. $E A=A B$
12. $\frac{B C}{C D}=\frac{A B}{A D}$
13. Given
14. Given
15. Defn. of $\angle$ bis.
16. Parallel Postulate
17. Auxiliary Lines
18. Side-Splitter Theorem
19. PAI
20. PCA
21. Transitive Property of $=\angle s(3,7,8)$
22. Converse of ITT
23. Definition of $=$ Segments
24. Substitution $(11 \rightarrow 6)$

We'll end by solving the following problem...the first proportion is straight forward, but don't get fooled (again...) by the second one!


