Section 2.4 – Complex Numbers

Example: Solve $x^2 + 1 = 0$.

To overcome the inability to solve this in the real number system, a COMPLEX NUMBER SYSTEM was created.

Complex Numbers

A complex number has both a REAL component and an IMAGINARY component.

A complex number is written in standard form as a + bi, where a is a *real part* and bi is the *imaginary part* (b alone is a real number).

Operations with Complex Numbers

Addition and Subtraction:

Examples:

1.
$$(4+7i)+(1-6i)=$$

2.
$$(1+2i)-(4+2i)=$$

3.
$$3i - (-2 + 3i) - (2 + 5i) =$$

4.
$$(3+2i)+(4-i)-(7+i)=$$

RECALL: $i^1 = i$ and $i^2 = -1$, so $i^3 = i \cdot i^2 = i \cdot (-1) = -i$ and $i^4 = i^2 \cdot i^2 = (-1)(-1) = 1$

Examples (Multiplying):

1.
$$4(-2+3i)=$$

Section 2.4 – Complex Numbers

2.
$$(2-i)(4-3i)=$$

3.
$$(3+2i)(3-2i)=$$

Complex Conjugates

The conjugate of a complex number of the form a+bi is a-bi.

Example: Multiply 4-3i by its complex conjugate.

Example: Write the quotient of the following complex number in standard form (a + bi).

$$\frac{2+3i}{4-2i} =$$

Section 2.4 – Complex Numbers

Principal Square Roots of Negative Numbers

If a is a positive number, the principal square root of the negative number –a is defined as:

$$\sqrt{-a} = i\sqrt{a}$$
.

Examples: Write the complex number in standard form.

1.
$$\sqrt{-3}\sqrt{-12} =$$

2.
$$\sqrt{-48} - \sqrt{-27} =$$

Solve the following equations.

3.
$$x^2 + 4 = 0$$

4.
$$3x^2-2x+5=0$$